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Abstract. Subglacial drainage plays an important role in controlling the coupling be-
tween glacial ice and the underlying bed. Here, we study the flow of water in thin, macro-
porous sheets between ice and bed. Previous work shows that small perturbations in wa-
ter depth for a nearly parallel-sided water film between ice and bed grow unstably be-
cause areas with greater water depth have enhanced viscous dissipation that leads to en-
hanced melting of the ice roof. We argue that in the presence of bed protrusions bridg-
ing a water sheet, the sheet can be stabilized by downward motion of the ice roof around
protrusions. This should be the case provided the rate of roof closure increases faster
with water depth than the rate of viscous dissipation within the sheet. We therefore mod-
ify existing theory to include protrusions that partially support the mass of the over-
lying glacier. Differences in the pressure driving on these protrusions relative to the wa-
ter sheet drive roof closure. The roof closure rate includes both the effects of regelation
and creep normal to the bed as mechanisms by which the overlying ice can move down-
ward, closing the ice–bed gap occupied by the water. The roof closure rate includes the
mechanisms of both regelation and creep normal to the bed allowing ice to move down-
ward, closing the ice–bed gap occupied by the water. In order to account for multiple
protrusion sizes at the bed (for instance, resulting from an assortment of various-sized
sediment grains), we incorporate a method for partitioning overburden pressure among
the different protrusion size classes and the water sheet. This method allows prediction
of the rates of downward motion for the ice roof. Rates are dependent on the degree of
ice-protrusion contact and therefore on water depth. We then investigate the possibil-
ity of stable, steady sheet configurations for reasonable parameter choices, and find that
these steady stats can occur for modest sheet thicknesses at very low effective pressures,
as is appropriate for instance of ice streams. Moreover, we find that multiple steady sheet
thicknesses exist allowing for the possibility of hydraulic switches between low and high
conductivity regimes for the subglacial hydrological system.

1. Introduction

Subglacial drainage is one of the main controls on glacier
sliding and erosion. Friction at the glacier bed is deter-
mined in large part by effective pressure, usually defined as
the difference between ice overburden and subglacial water
pressure. This is the case for both deformable and rigid
glacier beds [e.g., Paterson, 1994, Chaps. 7,8]. For glaciers
and ice sheets with water at the bed, any predictive theory
of ice dynamics requires a component that describes evolu-
tion of effective pressure, that is, a theory for drainage at
the ice–bed interface.

To determine the distribution of effective pressure at the
glacier bed requires an understanding of the morphology
of the subglacial drainage system and of the relationship
between water discharge, effective pressure, and hydraulic
gradient in individual drainage elements. A drainage sys-
tem can consist of different types of individual elements:
for instance, channels, linked cavities, canals, englacial or
groundwater flow, or a combination of any of these [e.g.,
Fountain and Walder , 1998; Hubbard and Nienow , 1997].
While theories exist for the behavior of individual drainage
elements, interactions between any of these elements are not
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well understood. As a result, there is no successful spatially
extended theory for subglacial drainage at present.

The relationship between water storage and effective pres-
sure in different drainage elements governs interactions be-
tween such drainage elements. Here, we consider stor-
age, or local water volume, to be water that connects spa-
tially and transmits hydraulic pressure variations [Fountain
and Walder , 1998; Murray and Clarke, 1995; Stone and
Clarke, 1993], but we do not consider unconnected stor-
age. Unconnected storage is important for transient pro-
cesses [e.g., Kamb, 1987] but likely plays a smaller role in
steady drainage. If connected water storage increases with
effective pressure, then a larger drainage element will tend
to draw water away from smaller elements because the larger
element is at a lower water pressure. The result is that the
drainage system concentrates water in a few large drainage
elements fed by smaller ones. Conversely, a setting in which
a decrease in water storage corresponds to an increase effec-
tive pressure leads to the formation of a distributed water
system, in which water is not concentrated in a few central
drainage elements.

The classical example of a drainage system that concen-
trates flow in a few main arteries is a Röthlisberger (R-)
channel system [Röthlisberger , 1972]. In the steady case,
large R-channels operate at high effective pressure (or low
water pressure) because higher melt rates are facilitated by
a wider cross-section, and must be balanced by faster creep
closure. This gives R-channel systems an arterial charac-
ter. By contrast, water storage in subglacial cavities in-
creases at low effective pressure, which allows bigger cavities
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to grow. Consequently, linked cavity systems tend to form
a distributed drainage network.

Once a drainage system is established subglacially, its re-
sponse to water input is determined by the relationship be-
tween flux on one hand and effective pressure and hydraulic
gradient on the other. Usually, systems such as R-channels
that contain more water at high rather than low effective
pressure will also transmit higher fluxes at high rather than
low effective pressure. Conversely, distributed drainage sys-
tems such as linked cavities, in which water storage is facili-
tated by low effective pressures, need not have such a simple,
monotonic relationship between effective pressure and flux.
For instance, the linked cavity theory of Fowler [1987] pre-
dicts increasing flux with increasing effective pressure (as R-
channel theory does) while the canal theory of Walder and
Fowler [1994] predicts the opposite. To model a drainage
system thus requires the physics that determines water flux
at a given effective pressure to be understood.

In short, a theory for subglacial drainage must incorpo-
rate two fundamental pieces: a functional relationship be-
tween water storage and effective pressure, and a means of
determining water flux in terms of effective pressure and
hydraulic gradient.

In this paper, we consider these relationships for drainage
through contiguous, macroporous water sheets at the ice–
bed interface. We envisage water flowing in a gap between
ice and bed, with clasts bridging the gap in places and pro-
viding partial support for the overlying ice. The mode of
drainage we have in mind combines characteristics of both
R-channels and linked cavities. As is the case in an R-
channel, the gap is assumed to remain open because sub-
sidence (or closure) of the ice roof is balanced by melt that
results from heat generation by viscous dissipation in flowing
water; but as in a linked cavity system, water volume in the
sheet increases with decreasing effective pressure, leading to
a distributed configuration.

Sheet-like drainage elements have been considered previ-
ously, for instance by Weertman [1972] and Walder [1982].
The main difference between their notion of a water film
and our notion of a water sheet is that we consider an ice
roof that is partially supported by contact with the bed —
as is also the case in a linked cavity system — while in
Weertman’s and Walder’s cases, ice and bed are everywhere
separated by water, so the ice is effectively afloat on a thin
water film. In general, we expect complete flotation of the
ice on a thin water film not to occur, but unevenness in the
bed to lead to partial contact. As we shall outline next, this
is a crucial difference which allows our water sheet to remain
stable while Walder’s film configuration necessarily leads to
channelization. From this point forward, when discussing
subglacial drainage, we make the distinction that a water
sheet has partial contact between the ice roof and sediment
floor. On the contrary, a water film everywhere supports the
overlying ice as described by Walder [1982] and Weertman
[1972].

Hydraulic sheets will be favored where gradients driving
water flow are low and sliding velocities are high, as we
argue further in section 2. These locations are generally
coincident with low ice overburden gradients. As such, low-
gradient ice sheets and glaciers will favor subglacial sheets
[e.g., Kamb, 2001]. Areas with steep ice thickness gradi-
ents, such as those near glacier termini, will not favor sheet
development or stability.

It is important to differentiate the sheets we consider from
subglacial floods in which overpressured sheets form and
subsequently channelize in the manner envisaged by Walder
[1982]. Field evidence exists for these sheet-like flows
[Björnsson, 2002; Jóhannesson, 2002; Magnússon et al.,
2007]. The sheets we consider here are distinct from these
short-lived flood-type sheets. We expect the former to ex-
ist stably in low discharge/low hydraulic gradient settings.
The latter exist in high discharge/low hydraulic gradient
settings.

2. Motivation

In order to understand how water can flow stably in a
subglacial sheet-like configuration, it is necessary to un-
derstand what might prevent such sheets from forming.
Walder’s [1982] analysis showing that sheet flows are un-
stable can be paraphrased as follows. If the sheet thick-
ens locally, water flow through this wider aperture will
be faster and more heat will be dissipated. This in turn
leads to further local thickening of the sheet and hence to
channelization. If we consider a vertically-integrated, two-
dimensional case, where heat transport in the along-flow
direction is mainly by advection, and diffusion—either lam-
inar or turbulent—governs heat transfer perpendicular to
flow, then this positive feedback is suppressed at short length
scales by lateral diffusion of heat in the water sheet. For tur-
bulent flow, momentum diffusion associated with eddies can
be written using an isotropic eddy diffusivity [Schlichting ,
1979] and leads to a turbulent heat diffusivity.

Here we argue that if this diffusion is strong enough and
there are bed protrusions bridging the water-filled gap be-
tween ice and bed, then a sheet configuration can, in fact,
remain stable. To illustrate this, we consider the follow-
ing simple model of unidirectional water flow parallel to the
y-axis. By unidirectional flow we mean that water veloc-
ity does not have a component perpendicular to the y-axis;
and consequently, we assume a hydraulic potential φ that
depends only on y. Let x measure distance perpendicular
to the y-axis, and H(x, t) be water depth, while u(x, t) is
water velocity in the y-direction. Then the Darcy-Weisbach
relationship gives, for steady state velocity,

u = −
√

4H

ρwfd

∣∣∣∣
∂φ

∂y

∣∣∣∣
−1/2

∂φ

∂y
, (1)

where fd is a friction factor and ρw is the mass density of
water. We assume here that the water in the sheet is fully
turbulent. Other relationships exist for laminar flow [e.g.,
Weertman, 1972]; however, we do not treat them directly.
We also model melting of the ice roof as the result of heat
transfer from the core of the flow across a thermal boundary
layer near the ice surface, in which heat transfer is deter-
mined either by near-wall turbulence due to surface rough-
ness or by the thermal conductivity of water if the flow in
the boundary layer is laminar. Let m be melt rate. Then

mL = c(T − Tm)− q0, (2)

where L is latent heat of fusion, c a heat transfer coefficient
for the boundary layer, and q0 is a background heat flux
that can include the geothermal heat flux, heat of sliding,
heat diffused through the ice, or other heat sources/sinks.
T is temperature in the interior of the sheet and usually ex-
ceeds the melting temperature of ice Tm. The melt rate m
determines the evolution of the ice-water interface as

∂H

∂t
=

m

ρw
, (3)

where we assume that flux divergence is negligible. Temper-
ature T above is determined by heat dissipation, turbulent
diffusion in the sheet, and heat loss to the ice interface,

− ∂

∂x

(
κH

∂T

∂x

)
= −Hu

∂φ

∂y
− c (T − Tm) , (4)

whereq κ is a turbulent diffusivity in the fully turbulent
part of the flow [e.g., Ng , 1998]. In writing the temperature
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equation (4) as a steady state equation, we have assumed
that latent heat terms dominate over specific heat terms. In
other words, we have assumed that cp(T − Tm) ¿ L. With
L = 3.336 × 105 J kg−1, cp = 4218 J kg−1 K−1 and tem-
perature deviations from the melting point less than a few
degrees, this is certainly the case.

To study the onset of channelization, we look at the evo-
lution of small perturbations to a uniform sheet in steady
state. The steady state sheet is described by

H = H :=
(q0

2

)2/3 (fdρw)1/3

|∂φ/∂y| , (5a)

T = T :=
q0

c
+ Tm, (5b)

u = u :=

√
4H

fdρw

∣∣∣∣
∂φ

∂y

∣∣∣∣
−1/2

∂φ

∂y
, (5c)

where := means “is defined to be” and we look at harmonic
perturbations of the form

H = H + H ′ exp(ikx + ωt), (5d)

T = T + T ′ exp(ikx + ωt), (5e)

u = u + u′ exp(ikx + ωt). (5f)

Here, k represents wavenumber (= 2π/ wavelength), while
ω is a growth rate (= 1/e-folding time) associated with the
perturbation. We use barred and primed variables to denote
average and perturbed variables, respectively. The pertur-
bation grows exponentially if ω > 0 and shrinks if ω < 0.

Substituting these in the governing equations and per-
forming a standard linearization yields the following:

u′ = −H ′
√

1

fdρwH

∣∣∣∣
∂φ

∂y

∣∣∣∣
−1/2

∂φ

∂y
, (6a)

k2κHT ′ = − (
Hu′ + H ′u

) ∂φ

∂y
− cT ′, (6b)

ωH ′ =
cT ′

ρwL
. (6c)

Eliminating u′, H ′, and T ′ from these equations and solv-
ing the resulting linear equation for ω gives the following
equation for growth rate,

ω =
3u(∂φ/∂y)c

2ρwL(c + κHk2)
, (7)

where ω is always positive, reflecting Walder’s [1982] posi-
tive feedback .

However, this mechanism is suppressed at short wave-
lengths and ω → 0 as k →∞. Damping of the positive feed-
back at short wavelengths is because of turbulent diffusion.
The maximum growth rate occurs at infinite wavelength
(k = 0), where ω = 3u/(2ρwL). Turbulent diffusion reduces

growth rate to half this maximum when k =
√

c/(κH), cor-

responding to a wavelength 2π
√

κH/c. Hence the wave-
length at which unstable growth of the sheet begins to be
suppressed noticeably increases with turbulent diffusivity κ.

Consider then what happens if there are bed protrusions
spaced at distances at which Walder’s positive feedback is
strongly suppressed. In this case, there is the possibility of
distributed sheet-like drainage. The sheet that exists be-
tween these protrusions is still unstable, but local thicken-
ing will be slow. Suppose the timescale for this thickening is
less than the timescale on which ice moves over the distance
between bed protrusions due to sliding. Walder’s feedback
then causes negligible differences in melting between neigh-
boring parts the ice roof in the time taken for the ice roof to
be advected over bed protrusions. Any differences in melting

between neighboring parts of the roof will therefore be dom-
inated by local changes in sheet thickness associated with
protrusions and dips in the bed, rather than by Walder’s
feedback. We assume that the effect of ice being advected
over these protrusions and dips is to smooth out any local
differences in melting over time, as a part of the ice roof that
experiences excess melt when positioned over a dip in the
bed will at a later stage experience reduced melt when it has
moved over a bed protrusion. Moreover, repeated contacts
with bed protrusions will also mechanically deform the ice
roof, and serve to even out the ice roof.

Therefore, we expect that unstable thickening is sup-
pressed altogether at this length scale, leaving only the
possibility of unstable thickening on longer length scales.
Specifically, if l is the spacing between bed protrusions and
ub is sliding velocity, then we expect unstable thickening to
be suppressed when the time taken for ice to travel between
bed protrusions l/ub is short compared with the growth
timescale 1/ω computed for wavelengths comparable to l,
k ∼ 2πl−1, or in other words, when

3l|u||∂φ/∂y|
2ρwLub

[
1 + κH4π2/(cl2)

] ¿ 1. (8)

This suppression is obviously favored by slow water flow
rates u (i.e., low hydraulic gradients ∂φ/∂y), by high sliding
velocities ub, and by small spacings l between bed protru-
sions. The first two of these conditions are clearly consistent
with ice stream-type motion, while the latter is a function
of local bed geometry. For any of these cases, though, we
would expect drainage to be distributed across the ice–bed
interface in a sheet.

The argument above deals only with wavelengths up to
the obstacle spacing l, and does leave open the possibility
of unstable thickening at longer wavelengths. However, at
these longer length scales, different physics applies as inter-
actions between bed protrusions and the ice roof must be
taken into account. The remainder of this paper considers
these interactions and their implications for the behavior of
subglacial water sheets.

3. Model for sheet closure

The basic process by which a sheet is stabilized at long
wavelengths is through downward motion of the ice roof.
Suppose the sheet thickens locally, so there is less contact
between ice and bed. If bed protrusions partially support
the weight of the overlying ice (i.e., effective pressure is pos-
itive), then the reduction in contact will lead to enhanced
downward motion of the ice, suppressing further thickening
and stabilizing the sheet. To quantify this, we construct a
model of the downward ice motion.

We envision downward closure to involve two principal
processes: viscous creep of ice between supporting protru-
sions and pressure melting around individual protrusions.
Consider the ice roof between two supporting protrusions.
Downward motion of the roof can result from viscous flow
between these two support points. If their spacing is le and
an effective stress σe is available to drive the viscous sagging
of ice between them, then the resulting downward velocity
can be estimated as,

vc = A|σe|n−1σele, (9)

where A and n are the usual parameters in Glen’s law [Pa-
terson, 1994, Chap. 5]. This equation is based on a simple
scaling argument: stresses of size σe acting over a length
scale le result in velocities of magnitude given by (9). In
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reality, if vc is mean downward velocity, then there would
be an additional factor on the right-hand side whose calcu-
lation for a given model geometry is beyond the scope of
this work. Implicit here is only that this factor is of O(1).

The stress σe in equation (9) can be identified for now
with the overall effective pressure pe, defined as the differ-
ence ice overburden σi and water pressure pw, so σe = pe

where pe ≡ σi − pw. When we generalize our theory later
to the case of multiple protrusion sizes, σe in (9) becomes
the stress that is available to drive viscous sagging between
support points, which can be less than pe.

In addition, the ice surface can move downward through
melting around the supporting protrusions. We assume that
this regelation process operates as described by Nye [1967].
The regelation velocity that results can be parameterized in
a simple form as follows. If the ice is at the pressure melting
point throughout, then a pressure difference ∆σ in the ice
near the contact with the bed protrusion will cause a tem-
perature gradient that leads to a melt/freeze pattern that
allows the ice to move downward [Paterson, 1994, Chap. 7].
This temperature gradient will be of magnitude β∆σ/re,
where re is a radius of ice–protrusion contact area and β
is the rate of change of ice melting temperature with pres-
sure from the Clausius-Clapeyron relationship [e.g., Wagner
et al., 1994]. If K denotes thermal conductivity, then the
associated heat flux is Kβ∆σ/re, leading to a regelation
velocity

vr =
Kβ∆σ

ρiLre
. (10)

We compare this formulation of temperate regelation with
related work in Rempel [2008] in appendix A.

The regelation process described here is driven by the
pressure difference ∆σ around the contact area between ice
and the bed protrusion. This is related to effective stress,
and we expect ∆σ to increase with σe. More accurately,
we can estimate ∆σ as follows. Consider an arbitrary area
Si of the lower boundary of the ice that will be partially in
contact with the bed and partially supported by the water
sheet. Let overburden stress σi act normal to this area. De-
note by Ss the part of this area that is in contact with the
bed protrusions, and let σs be normal stress at these ice–bed
contacts. Then Sw = Si − Ss is the part of the ice roof in
contact with water, and we denote water pressure by pw.
Force balance requires

Siσi = Swpw + Ssσs, (11)

so that

∆σ = σs − pw =
Si

Ss
(σi − pw) =

Si

Ss
σe. (12)

In other words, the driving pressure difference ∆σ in the
regelation process is effective pressure divided by the frac-
tion of the ice roof occupied by ice–bed contacts. Equation
(10) therefore becomes

vr =
βK

ρiLre

Si

Ss
σe. (13)

The total downward motion v of the ice is then simply
given by the superposition of viscous creep and regelation,

v = vc + vr. (14)

The total ice velocity v is a function of effective pressure pe.
It is also a function of water depth H, as an increase in H is
likely to reduce the contact area Ss (and hence also reduce
the contact radius re while increasing the contact spacing
le), leading to an increase in regelation velocity vr as well

as creep velocity vc. It is precisely this kind of increase in v
with increasing H that we expect to stabilize the water sheet
against thickening due to enhanced viscous dissipation. To
compute the relationship between v, pe, and H and estab-
lish whether a stable sheet flow is possible therefore requires
us to specify how Ss, re, and le depend on sheet thickness.

A real bed likely has multiple protrusion sizes, and this
can have a large effect on the roof closure velocity v. For in-
stance, increases in H can lead to smaller protrusions losing
contact with the ice altogether and leave only larger sizes
to support the ice roof of the sheet. The net result will be
faster downward motion of the ice. This increase in velocity
also turns out to be a major component in the stabilization
of the water sheet, and we generalize equations (9) and (13)
to account for multiple obstacle sizes. Subsequently we ad-
dress how the geometrical parameters corresponding to Ss,
re, and le for either a single or for multiple obstacle sizes
depend on water depth H, and then we compute numerical
examples in section 4.

3.1. Sheet closure with multiple protrusion sizes

We consider size classes of bed protrusions with distinct
radii R1, R2,. . . ,Rj ,. . . ,RN as was done by Lliboutry [1979].
Specifically, Rj is the radius of an individual protrusion, ide-
alized as a hemisphere. For instance, the class j = 1 could
consist of boulders with individual radii ∼ R1, while the
class j = 2 consists of cobbles with individual radii ∼ R2,
and so forth. We use lj to denote the distance between the
centers of nearest neighbors in class j, and le,j for the span
of the ice roof between nearest neighbors (which is generally
less than lj). To be definite, we assume that the classes j
are ordered by size, so that R1 À R2 À . . . À RN and
l1 À l2 À . . . À lN .

Our next step is to calculate the downward ice velocity
around bed protrusions of size j. To generalize equations (9)
and (13), we note that effective pressure pe = σi−pw denotes
the difference between a far-field normal stress σi (given by
overburden in the case of a single protrusion size in equation
(9)) and a pressure pw at the ice roof between the supporting
protrusions (given by water pressure in the case of a single
protrusion size). For one protrusion size, the effective stress
driving closure is equal to the effective pressure, σe = pe.
However, when there is more than one size class present, we
can no longer identify the far-field stress with overburden
because part of the overburden will be supported by protru-
sions of larger size classes. Additionally, smaller protrusion
sizes will act to support the ice between larger protrusion
sizes, so the average stress between large grains is not equal
to the water pressure.

Instead, we define the an effective stress σe,j that drives
viscous creep of ice between neighboring protrusions of class
j as the difference between far-field stress σj acting on
these protrusions and the normal stress pj acting on the ice
roof between the jth class protrusions. To compute these
stresses, we can observe that the normal stress pj is in fact
the far-field stress that acts on protrusions of the next class
j + 1 of smaller protrusions, so pj = σj+1 and

σe,j = σj − σj+1. (15)

Figure 2 illustrates this stress recursion for different values
of H. This recursion relation can be seen as analogous to the
stress partitioning between different bedrock obstacle sizes
in the hard-bed sliding theories of Lliboutry [1979], Fowler
[1987] and Schoof [2005]. It works for all but the smallest
and largest size classes. For the largest size class j = 1,
(15) still holds, but we need to define the stress condition
σ1 = σi, that is, far field stress for the largest size class
is indeed overburden. Similarly, for the smallest size class
j = N , the normal stress at the ice roof between protrusions
of this size is water pressure σN+1 = pw.
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Summing over j in (15) and using the conditions on σ1

and σN+1 gives
N∑

j=1

σe,j = pe, (16)

where pe is the same effective pressure as before, pe =
σi−pw. Given a stress partition between bed protrusions of
different size classes of the form (16), downward ice motion
past the jth size class is then given by generalized forms of
(9) and (13),

vj = v = A|σe,j |n−1σe,j le,j +
βK

ρiLrj

Si,j

Ss,j
σe,j . (17)

Here, le,j is the spacing between nearest contacts between
ice and jth size bed protrusions, while rj is the radius of
each contact area between ice and an individual jth size
protrusion (corresponding to le and re in the case of a single
protrusion size class, respectively). Ss,j is the total contact
area normal to ice motion of the jth size class with the ice
(corresponding to Ss for a single obstacle size class), and
Si,j = Si −

∑j−1
k=1 Ss,k.

In equation, we have assumed that the ice must move past
all protrusions at the same rate v (i.e., v1 = . . . = vN = v).
If this were not the case, then mass continuity for the ice
could not be satisfied. In equation (17), any vj can be re-
placed by a single downward velocity v that describes the
closure of the water gap between ice and bed. At this point,
suppose that we are given an overburden σi, a water pres-
sure pw, and the geometrical parameters le,j , rj and Ss,j ,
describing the size distribution of bed protrusions and the
extent of their contact with the ice roof. We would like
to calculate how the total effective pressure is partitioned
among the different protrusion size classes, and how fast ice
moves past them. The model as formulated allows us to do
this when v = v1 = . . . = vN because we have as many
equations as unknowns in (16) and (17) namely the σe,j and
v variables (where j = 1, 2, . . . , N). If each protrusion size
had a different velocity such that there were N vj ’s, then
there would be 2N unknowns and N +1 equations. The as-
sumption of a single downward velocity renders the system
of equations tractable.

The system of nonlinear equations given by (16) and (17)
allows both the stress partitioning into the σe,j ’s and the
closure velocity v to be computed as a function of pe and
the geometrical parameters le,j , rj , and Ss,j . As we have
pointed out, we are interested specifically in the dependence
of v on the sheet thickness H, which enters into this calcula-
tion by determining the extent of ice–bed contact. In other
words, H determines the smallest size class N that is still
in contact with the ice roof as well as the roof span le,j ,
the contact areas Ss,j and the radii rj of individual con-
tacts between ice and bed protrusions. We consider these
geometrical relationships next.

3.2. Geometry of contact areas

The small-scale geometry of the bed as well as the wa-
ter depth govern the length scales le,j and rj as well as the
areal terms Si,j and Ss,j . (The protrusions considered in our
theory can be any type of bed roughness: sediment clasts
or bedforms on an unlithified bed or on bedrock. For the
purposes of constructing our theory, no distinction needs to
be made between these. It is only important that the pro-
trusion distribution is known as the water depth H increases
or decreases. For fast water flow, it is possible that an un-
lithified bed could erode. We do not consider this case here
because our goal is to understand how closure works with-
out the added complication of a mobile bed.) Each of these
quantities le,j , rj , Si,j and Ss,j also depends on the water
depth because H determines the degree of protrusion sub-
mergence. Figure 3 illustrates the protrusion, ice, and water

sheet relationship. Water flows along an ice–bed gap, and
bed protrusions are either partially or wholly submerged.
Those that are large enough to penetrate the ice–bed gap
partially support the ice, and therefore sheet thickness H
also determines the smallest size class that still plays a role
in determining roof closure velocity.

The jth size class consists of bed protrusions Rj spaced a
distance lj apart, and protruding above the datum H = 0.
All size classes that remain in contact with the ice roof must
then have Rj ≥ H, while size classes with Rj < H are sub-
merged in the water sheet. This implicitly determines the
smallest size class N in the calculation above. Size classes
with j ≤ N bridge the water sheet, and the contact radius
rj with the ice roof can be computed from basic geometry
as (see Fig. 3b,c)

rj =
√

R2
j −H2, (18a)

so that an individual contact area between a protrusion of
the jth size class and the bed becomes πr2

j . In a square of
the bed of side length lj , there will be precisely one such
contact, so

Ss,j

Si
=

πr2
j

l2j
, (18b)

and therefore the term Si,j/Ss,j in equation (16) can be cal-
culated as

Si,j

Ss,j
=

Si −
∑j−1

k=1 Ss,k

Ss,j
=

1−∑j−1
k−1

πr2
k

l2
k

πr2
j

l2j

. (18c)

Lastly, the roof span between nearest neighbors is parame-
terized as

le,j =
√

l2j − πr2
j , (18d)

so that l2e,j/l2j is the fraction of the ice area Si not occupied
by contacts with jth size protrusions.

Our model provides an internally consistent scaling to
permit an understanding of closure by both closure and
creep. Because our model does not solve a continuum me-
chanical formulation for ice roof closure, the quantities we
calculate are presumably accurate to factors of O(1). This
model should, therefore, be understood as giving qualita-
tively correct behavior for the drainage system with correct
orders of magnitude. However, even if our model did solve
a continuum mechanical problem, the appropriate data for
glacier bed geometries does not exist at present. As a re-
sult, a continuum formulation would probably not result in
significant gains in accuracy. Thus, scalings such as ours
provide the easiest means of understanding ice closure.

From equations (18), the geometrical parameters rj and
le,j in the model consisting of equations (16) and (17) can
be related to sheet thickness H as well as the obstacle spac-
ings and sizes lj and Rj , allowing the sheet closure velocity
v to be found as a function of effective pressure pe, sheet
thickness H and the fixed geometry of the bed protrusions
determined by the lj and Rj as well as the various material
parameters in the model.

4. Computed closure rates

In this section, we compute several examples of clo-
sure rates of a subglacial water sheet as functions water
depth and effective pressures, based on (16) and (17). We
limit maximum effective pressure to approximately 0.9 MPa,
equivalent to 100 m of ice overburden, and naturally con-
sider only water depths H that are smaller than the max-
imum protrusion size R1 (as otherwise there would be no
ice–bed contact).
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Clearly, closure rates depend not only on H, pe and ma-
terial parameters for ice, but also on the geometry of the
bed, expressed in terms of the size and spacing parameters
rj and lj . We begin by showing how creep and regelation
act on a bed of uniform size protrusions that are equivalent
in size to coarse sand. We then add a second grain size so
that half of the grain area at the bed is covered by boul-
ders and the other half is sand. In the final example, we
construct a bed with multiple grain sizes that is intended
to represent subglacial till, with protrusions ranging from
boulders to clay-sized particles. Other grain distribution
examples were treated by Creyts [2007, Chap. 3], and those
results are compatible with results presented here. For all
examples, we assume that grains maintain closest hexagonal
packing on a flat plane. The cross-sectional area occupied
by sediment grains is thus 91% of the total bed area. In
other words, each of the examples has a bed area porosity
of nw ∼ 0.09. By bed area porosity, we simply mean the
fraction of bed, projected onto a plane parallel to the mean
bed slope, that is not occupied by sediment grains. Nonuni-
form packing of spheres can yield bed area porosities space
higher or lower than 0.09, but we keep this value to facilitate
comparison among different examples.

4.1. Uniform grain size example

An example of the downward motion of ice over a bed
composed of uniform sand appears in Figure 4 with relevant
parameters from Table 1. In this case, water depth is limited
to R = 0.5 mm with l about 0.9 mm. Here, black contours
indicate closure velocity structure with the highest velocities
occurring in the upper right. Using the recursion scheme, we
reconstruct both regelation and creep velocity components.
Overall, closure velocities are governed by regelation, and
over 99% of the closure velocity is the regelation component.
This is a result of a small grain size. The packing of grains
does not have an effect on the closure mechanism. Even for
wide sand spacing relative to grain radius, the creep length
scale is too small to allow creep to be active. The downward
slope of velocity contours with increasing effective pressure
in Figure 4 is a result of higher stresses overcoming the ef-
fect of increasing total cross sectional area in equation (17).
Most velocities lie in the range 0–5× 10−6 m s−1. However,
at the maximum elevation, where the contact area is small,
velocities are over an order of magnitude higher. This re-
sponse is true for all grain sizes. Regelation velocities also
can increase by an order of magnitude by increasing grain
spacing, because this increases the relative driving stress.

4.2. Two grain size example

Figure 5 builds on the sand-sized case to include boulders.
In this example, half of the bed is covered with boulders
(R1 = 0.256 m, l1 ' 0.674 m) while the other half is sand
(R2 = 0.0005 m, l2 ' 0.001m). Both closure mechanisms
are activated over different areas of pe–H space. When ef-
fective pressures are low, regelation is the dominant closure
mechanism (vr/v > 0.9). Where effective pressures are rel-
atively high, creep dominates (vc/v > 0.9). Between the
regelation and creep regimes in Figure 5, there is a mixed
regime, where both mechanisms are relevant. Where ice
interacts with sand at the bottom of the figure, the regela-
tion component increases. Because of the stress partitioning
between sand and boulders, a mixed regime lies below the
creep regime in Figure 5.

The velocity structure in Figure 5 is fairly subdued. Be-
cause we have assumed n = 3 in the flow law, the velocity
contours are spaced cubically in the creep regime along the
right hand side of the figure. The curve of these lines re-
sults from effective length le decreasing with water depth.
Velocity magnitudes are in the range 0–2.5× 10−6 m s−1.

4.3. Multiple grain sizes

In this example, we assume the sediment grain size distri-
bution follows that of a deformation till. To obtain a grain

size distribution, we assume fractal scaling, and define Ns,j

as the number density of the jth size class as

Ns,j :=
πR2

j

l2j
= N0

(
Rj

R0

)−a

, (19)

where N0 is a reference number density and R0 is a refer-
ence grain size. Measurements on tills generally show that
a ∼ 2.9 [Hooke and Iverson, 1995; Khatwa et al., 1999] but
can be lower [e.g., Fischer and Hubbard , 1999]. Here we as-
sume that the fractal index a = 3, which indicates that all
measured grain sizes occupy roughly the same volume of the
till.

In reality, grain sizes are continuous, but our theory is
built around discrete size classes and is in that sense similar
to the linked-cavity theory of Fowler [1987], which also rep-
resents bed protrusions in discrete size classes. To discretize
grain sizes, we use the the Φ-scale commonly used to classify
loose sediments. In terms of grain radius R, Φ is defined as

R = 2−(Φ+1) × 0.001m. (20)

We construct grain size classes Rj by putting Rj =
2−(Φj+1) × 0.001m with Φj = −9,−8, . . . , 8. As a result,
grain sizes are separated by a factor of two, and this may
appear to contradict assumptions that R1 À R2 À . . . and
l1 À l2 À . . .. These assumptions are necessary to sepa-
rate the effects of different grain sizes in section 3.1. We are
using the asymptotic limit of vanishing grain size ratios to
approximate a bed with protrusions that have a fixed and
finite size ratio. The question of when this limit becomes a
good approximation is one that we cannot directly answer
here, though we expect that our model will produce at least
qualitatively the right behavior. Bluntly, as Rj+1 → Rj ,
the theory presented above breaks down. However, results
discussed below using Rj+1 = Rj/2, illustrate behavior that
is qualitatively correct with plausible closure velocity mag-
nitudes.

The largest size class is R1 = 0.256 m in the discrete
grain size distribution described in (20), and our grain size
distribution therefore includes coarse gravel, cobbles, and
boulders. These larger grain sizes are undoubtedly present
in deformation tills, which are one of the most common types
of subglacial till [Benn and Evans, 1998, Chap. 10]. Grain
sizes in deformation tills are likely indicative of protrusions
along the bed. While there are various mechanistic inter-
pretations of these tills, these are beyond the scope of this
paper. Rather, we seek a reasonable distribution of material
at the bed, and grain size data exists for deformation tills
that has been interpreted via equation (20) [for an overview,
see Clarke, 2005]. Sampling for these tills, however, is usu-
ally focused on smaller grains. Equivalent studies for rivers
have shown that larger grains are not sampled adequately
[e.g., Church et al., 1987], and this sampling problem likely
exists for tills, so our chosen grain size distribution is there-
fore likely to be reasonable.

Results for this 18-grain-size distribution appear in Fig-
ure 6. Similar to the two-grain case, regelation-dominated
closure (vr/v > 0.9) only occurs for low effective pres-
sures. For higher effective pressures, creep-dominated clo-
sure (vc/v > 0.9) occurs for the largest grain size to a water
depth of H = 0.128 m. At this water depth, the second
grain size (R2) begins to affect the closure velocity. For wa-
ter depths shallower than 0.128 m but greater than about
0.09 m, the regelation length scale r2 is small, meaning that
regelation velocities are relatively high (eq. (13)). In this
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case, when water depths are smaller than but comparable to
grain radii, equation (18a) states that the regelation length
scale will be small. Regelation, therefore, plays a larger
role in the total closure velocity, and the areas of creep-
dominated closure are separated by a mixed closure regime.

At a water depth of 0.064 m, corresponding to contact
with the third protrusion size R3, a similar change from
creep-dominated to mixed mode closure occurs because r3 is
small and regelation velocities increase. Below a water depth
of 0.064 m, no further creep-dominated closure appears in
Figure 6 because the introduction of each successive grain
size introduces an additional small rj , and the regelation
velocity increases relative to the total closure velocity.

Despite closure velocity magnitudes hovering again in the
0–10 × 10−6 m s−1 range, the closure velocity structure
is very different from the two grain example. In the up-
per creep-dominated regime, closure velocities are notably
higher than in the creep regime in Figure 5. There are two
reasons for this increase in velocity. Because there are more
grain size classes in present in Figure 6, there is a smaller
population density of the largest grains. The result is that
more stress is focused on the larger grains for greater H.
The second cause is that the largest creep length scale le,1

is bigger because of the increase in number of grain sizes.
The focusing of the stress on fewer contacts accounts for
2–3 times the velocity increase while the change in length
scale accounts for 3–4 times the velocity increase. The clo-
sure velocities are higher by roughly an order of magnitude
because of this concentration effect.

With more large grain sizes, we can also examine the
stress partitioning. Figures 7 and 8 show the relative driv-
ing stresses on each grain. For low effective pressures, R1

requires proportionally more of the available stress (Fig. 7a).
This requirement occurs because r1 is relatively large, mak-
ing regelation slow, and the driving stress is low, making
creep slow. Other grain sizes have faster regelation velocities
at low driving stress. Stress must concentrate on the largest
grains to increase the ice velocity past these grains so that
continuity is satisfied. For higher effective pressures, frac-
tional stress on grain size R1 decreases more rapidly with de-
creasing water depth than at lower effective pressures. This
decreasing trend results from the power-law dependence of
creep velocity on effective pressure. Closure velocities can
then be high on R1 without requiring high stresses.

Smaller grain sizes follow trends similar to the larger
grain sizes. Smaller grains have smaller rj , and regela-
tion occurs more readily (R2 to R5 in Figs. 7b–e and
8b–e). Higher effective pressures activate creep because it
is power law dependent. However, creep only contributes
significantly to the total closure velocity for R1–R4. For
Ri ≤ R5 = 0.016 m, regelation is always the dominant
closure mechanism, and the smaller grains (e.g., Fig. 7e,f,
and 8e,f ) support very little of the overall available driving
stress. Grain sizes smaller than R8 = 0.002 m each support
less than 1% of the available driving stress. Collectively,
these 10 smaller grain sizes account for less than 2% of the
entire stress partitioning. This result stems from the inverse
dependence of regelation on rj (eq. 13).

5. Water sheet dynamics

Armed with our description of ice roof closure, we can
now address the dynamics of the water sheet itself, when
modeled at horizontal length scales that are much larger
then the obstacle spacings lj . We consider only a simplified
version of such a sheet model in order to address the ques-
tion of sheet stability, and present a more complete theory
in a separate paper. Specifically, as in section 2, we consider
only the stability of the water sheet to transverse perturba-
tions in sheet thickness H, assuming that the flow of water
is unidirectional in the y-direction (so there is no transverse
hydraulic gradient) and that H depends only on x and t.

We use the same notation as in section 2. With a Darcy-
Weisbach friction law for water flow in the sheet, we can
once again relate flow velocity in the y-direction to hydraulic
gradient ∂φ/∂y and sheet thickness H:

u = −
√

4H

ρwfd

∣∣∣∣
∂φ

∂y

∣∣∣∣
−1/2

∂φ

∂y
. (21)

Viscous dissipation in the water sheet will again lead to
melting of the ice roof. Because we are interested in large
horizontal length scales, we ignore turbulent diffusion and
advection of heat in the sheet here (which are germane to
smaller scales as considered in section 2), and assume that
heat dissipated viscously causes local melting of the ice roof
at rate m, so

mL = −Hu
∂φ

∂y
=

2H3/2|∂φ/∂y|3/2

√
ρfd

− q0, (22)

where q0 is a background heat flux as before. In order to
obtain a steady state sheet, this rate of melting must be off-
set by ice roof closure, which the theory in section 3 allows
us to compute in the general form

v = v(pe, H). (23)

An analytical form for v is generally not available for mul-
tiple protrusion sizes; therefore it must be computed nu-
merically. We note however that v normally increases with
both pe and H. Physically, the reasons for this behavior are
obvious: greater effective pressure will accelerate the creep
closure and regelation mechanisms, while a greater sheet
thickness will lead to less contact between ice and bed and
hence less resistance to ice roof subsidence.

The evolution of the sheet thickness can therefore be cast
in the form

∂H

∂t
= m(|∂φ/∂y|, H)− v(pe, H), (24)

where we emphasize that m defined in equation (22) depends
on the hydraulic gradient ∂φ/∂y and on sheet thickness H.

A stability analysis along the lines of section 2 is now
straightforward. For a fixed effective pressure pe and hy-
draulic gradient ∂φ/∂y, we have a steady state uniform sheet
solution of the form given implicitly by the solution H of

v(pe, H) = m(|∂φ/∂y|, H) (25a)

with corresponding steady water flow velocity

u = −
√

4H

ρwfd

∣∣∣∣
∂φ

∂y

∣∣∣∣
−1/2

∂φ

∂y
. (25b)

Once more, we look at harmonic perturbations of the form

H = H + H ′ exp(ikx + ωt). (25c)

where H ′ is small. It is now straightforward to see that ω is
determined simply by the linearized form of (24),

ωH ′ =

[
∂m

∂H

∣∣∣∣
H=H

− ∂v

∂H

∣∣∣∣
H=H

]
H ′, (26)

which yields

ω =
∂m

∂H

∣∣∣∣
H=H

− ∂v

∂H

∣∣∣∣
H=H

. (27)
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The sheet is stable if ω is negative, that is, if

∂v

∂H

∣∣∣∣
H=H

>
∂m

∂H

∣∣∣∣
H=H

. (28)

As expected, the water sheet flow is viable if melt rate
and roof closure balance, and if roof closure increases more
sharply with increasing sheet thickness than melt rate does.

Graphically, this can be interpreted as follows. For fixed
pe and ∂φ/∂y, m and v can be treated as functions of H
alone, and steady sheet thicknesses correspond to points of
intersection of their graphs (Fig. 9, using parameters from
Table 1). The steady sheet solution is also stable if the curve
representing v crosses the curve representing m from below,
i.e.,if the slope of v against H is steeper than the slope of m.
Figure 9 illustrates this stability graphically. For any stable
solution, increasing water depth a small amount leads to a
higher closure rate than melt rate, which reduces the water
depth back to the stable solution. Similarly, if water depth
is decreased a small amount from a stable solution, the melt
rate is greater than the closure rate and the water depth
increases.

5.1. Steady state water depth and flux

We now look at numerical computations of steady state
sheet thicknesses given by equation (25a) for realistic pa-
rameter values and assess their stability based on the above
criterion given by inequality (25a). Given these results, we
can also consider the corresponding water flux uH that a
subglacial water system carries for corresponding combina-
tions of effective pressure and hydraulic gradient. We then
compare these with realistic values for water flux.

Steady state sheet thickness H is shown as a function of
effective pressure pe and hydraulic gradient |∂φ/∂y| in Fig-
ure 10. For a given hydraulic gradient, a balance between
melt and closure is possible only if effective pressures are not
too high because closure velocities are too large otherwise.
In terms of Figure 9, this would correspond to the closure
curve lying everywhere above the melting curve. The only
possible steady state in that case is the absence of a water
sheet (H = 0), which we have not depicted. Hence, the
surface H(pe, |∂φ/∂y|) in Figure 10 is shown only for com-
binations of pe and |∂φ/∂y| for which H > 0.

The most striking feature of Figure 10 is the stepped
appearance of the surface H(pe, |∂φ/∂y|), which is in fact
a generally multivalued surface. For a given combination
of pe and |∂φ/∂y|, there can in general, be more than one
steady state sheet thickness. On one hand, the ‘illuminated’,
nearly horizontal plateaux correspond to sheet thicknesses
H close to one of the ri, where closure velocity v(pe, H) is
very sensitive to small changes in sheet thickness (see also
Figure 9). Because of this sensitive dependence on H, a
wide range of melt rates can be balanced by closure for very
similar values of H, and hence steady state values of H
are relatively insensitive to hydraulic gradients and effective
pressures. Moreover, the sensitive dependence of closure on
H implies that these plateaux correspond to stable steady
states: small increases in H lead to much larger increases
in closure than melt, stabilizing the sheet (see also Fig. 9).
The darker, steep parts of the surface H(pe, |∂φ/∂y|) in Fig-
ure 10, on the other hand, correspond to unstable solutions.
These correspond to points of intersection of the melt and
closure curves in Figure 9 where melt rate increases more
rapidly with sheet thickness than closure rate does.

We note that the stepped appearance of Figure 10 is
partly the result of grouping bed protrusions into discrete
size classes. In this case, each of the plateaux corresponds to
a different size class, and we optimistically infer that similar
multiple solutions occur for a continuous distribution of size
classes. To resolve this issue would require either a gener-
alization to a continuous distribution of size classes, which

we defer to future work. However some tills have bimodal
size distributions, for which a treatment using distinct size
classes would be appropriate.

An important observation is that the stable branches of
the surface H(pe, |∂φ/∂y|) are those on which H decreases
with effective pressure. This is illustrated further in Fig-
ure 11, where H is plotted as a multivalued function of pe

for various values of hydraulic gradient |∂φ/∂y|. Clearly,
the stable plateaux in Figure 10 correspond to the parts of
these curves that are nearly flat but slope gently downward
to the right (i.e., on which ∂H/∂pe < 0), while the unsta-
ble branches of the surface in Figure 10 correspond to the
parts of these curves that slope upward to the right. This
feature can be derived from the stability criterion given by
the inequality (28). Here, steady state sheet thicknesses are
defined implicitly by equation (25a); differentiating and ap-
plying the chain rule gives

∂v

∂pe
+

∂v

∂H

∂H

∂pe
=

∂m

∂H

∂H

∂pe
, (29a)

so
∂H

∂pe
= − ∂v

∂pe

/ [
∂v

∂H
− ∂m

∂H

]
. (29b)

If closure velocity v increases with effective pressure pe

and the stability criterion (28) is satisfied, it follows that
∂H/∂pe < 0. Thus, stable, steady state sheet thicknesses
decrease with increasing effective pressure, and the sheet
stores less water at higher effective pressure, as may be ex-
pected intuitively for a distributed water system. If this were
not the case, an area where the sheet is thicker would have
a higher effective pressure than where the sheet is thinner.
Thus water would be drawn away from the thinner area,
which would cause water to concentrate into the thickened
areas. The net result would be channelization. This ob-
servation, while not captured by our simple description of
sheet dynamics in section 5, becomes relevant when that de-
scription is extended to include spatial variations in effective
pressure.

Up to this point, we have looked only at water depth
variations. In turn, width-averaged water flux is simply
Q = uH for a sheet that is in steady state. Because dis-
charge can also be expressed as functions of effective pres-
sure and hydraulic gradient, we can plot the dependence
of Q in Figure 12. Again, the surface depicting water flux
has a stepped appearance, which is due to the same physics
as the stepped appearance of Figure 10, and ‘illuminated’
parts of the surface again correspond to stable solutions.
Notably, these stable branches of the surface have discharge
increasing with hydraulic gradient and increasing with effec-
tive pressure. Water discharge that increases with hydraulic
gradient is expected for a distributed drainage system, while
the dependence on effective pressure is simply the result of
water depth controlling the hydraulic conductivity.

6. Discussion

The existence of multiple steady states for distributed
water sheets with depth greater than the laminar–turbulent
transition (' 3 cm for our parameter choices) suggests that
a given combination of effective pressure and hydraulic gra-
dient may correspond to a number of different drainage con-
figurations. Abrupt switches could then occur, between,
say, a relatively inefficient and a more efficient drainage sys-
tem as effective pressure and hydraulic gradient are changed
(i.e., one with low H and one with high H). This behavior
is fundamentally different from channelized turbulent flows
[e.g., Röthlisberger , 1972; Shreve, 1972] where flux can only
increase as a monotonic function of the hydraulic potential



CREYTS AND SCHOOF: SUBGLACIAL DRAINAGE X - 9

gradient and effective pressure. These multiple steady states
are a result of the closure scheme presented in section 3, and
relies on a distribution of protrusions which is such that ice
closure depends sensitively on sheet thickness for certain val-
ues of H, where an increase in sheet thickness leads to loss
of contact with a dominant protrusion size. We have shown
this to be plausible for discrete size classes; while for a real
bed, the distribution of protrusion sizes may be smoother
than that assumed above. Creyts [2007] showed that the
rates of closure are qualitatively similar for grain size dis-
tributions with more size classes. For these, the changes in
closure velocity are more subdued, but they may still lead
to closure velocity depending sensitively on sheet thickness
around certain values of H. We thus expect multiple steady
states for more general distributions of protrusion sizes [e.g.,
Benoist , 1979; Hubbard et al., 2000] but leave this extension
for future work.

We have not addressed two-dimensional effects mathe-
matically. For distributed sheets, lateral flow of water will
be important: relatively underpressured regions of the bed
will draw water, and relatively overpressured regions will ex-
pel water. For regions with extents on the order of an ice
thickness or larger, we expect changes in effective pressure
to progress in a diffusive manner; and because our model
is mathematically local (i.e., no spatial coupling), these re-
gional effects are not developed. A significant complication
however lies in the possibility of multiple steady states and
of switches between them, which could conceivably lead to
oscillatory behavior in drainage.

Furthermore, for low water flows that are laminar rather
than turbulent (with Reynolds number Re < 2300), our ar-
gument in section 2 is not applicable. Because we cannot
make an argument for enhanced heat transfer perpendicular
to flow, we expect channelization to occur as described by
Walder [1982], albeit rather slowly. However, our stability
argument from section 2 holds where flow is turbulent above
a specific discharge of approximately 4 × 10−3 m3 s−1 m−1

(Fig. 12). This corresponds to a few centimeters (' 3) of
sheet thickness, depending on hydraulic gradient.

The analysis presented here is broadly consistent with ob-
served ice stream hydrology. Recent work on the hydraulics
of ice streams have shown that water is areally distributed
with temporal changes between states of deep and shallow
water [e.g., Fricker et al., 2007]. Hydraulic potential gradi-
ents are within the range 0–20 Pa m−1, and it is possible
that multiple steady states of the hydraulic system exist
here, which can be captured by our theory. One additional
complication that is likely to be relevant in ice streams is
the effect of sliding on the closure velocity v: sliding can
conceivably lead to ice being pushed upward as it moves
over bed protrusions, which will locally reduce the closure
velocity. Parts of the water sheet may then function some-
what like water-filled cavities, in the sense that the sheet
is prevented from closing not by melting but by ice motion
around bed protrusions [Fowler , 1986, 1987; Kamb, 1987;
Walder , 1986; Schoof , 2005]. Steady-state sheet thickness
is then likely to depend not only effective pressure pe and
hydraulic gradient |∂φ/∂y|, but also on sliding velocity, with
sheet thickness increasing with sliding velocity [e.g., Schoof ,
2005].

Another question we have not addressed is the transition
from flow in a water sheet to the formation of R-channels.
Ultimately, this has to be driven by Walder’s [1982] insta-
bility, which we have argued can be suppressed by a combi-
nation of diffusion of heat in the water sheet and the sliding
of ice, which suppresses the unstable thickening of parts of
the sheet as they move over bed protrusions (see section 2).
However, it can be seen from the constraint (8) that this
is only plausible for relatively small hydraulic gradients: at
high hydraulic gradients, the rate of viscous dissipation in
the water sheet is high enough that unstable thickening can

no longer be suppressed, and channelization must ensue. In

terms of the surfaces in figures 10 and 12, this implies that

the ‘stable’, stepped parts of these surfaces are in fact only

stable for sufficiently low values of |∂φ/∂y|, and in particu-

lar, that the topmost step is in fact unstable to channeliza-

tion for large enough hydraulic gradients. In other words,

we expect that there is a boundary on this topmost plateau

that separates a part of it at low |∂φ/∂y| that is stable to

channelization from another part at high |∂φ/∂y| that is

unstable to channelization in the way described by Walder

[1982]. However, the precise location of this boundary can-

not be calculated from our theory.

7. Conclusions

Here, we have extended previous work [e.g., Walder ,

1982; Weertman, 1972] to show that distributed water sheets

can be stable to much greater depth than previously quan-

tified. The presence of protrusions that bridge the ice–bed

gap can stabilize distributed sheets. Stabilization occurs

because areas of greater water depth (and therefore those

areas that are actively increasing water depth due to ice

melt from enhanced viscous dissipation) can be offset by en-

hanced downward closure of an ice roof. This mechanism

relies on a finite difference between overburden and water

pressure (i.e., a finite effective pressure) driving downward

closure. This feature stands in contrast to water films with-

out bed protrusions Walder [e.g., 1982] where only water

pressure balances ice overburden.

In constructing our theory, we have developed a recursive

formulation for computing the partition of stresses between

different protrusion sizes that exist at the bed and related

these stresses to the downward motion of the ice through

both viscous creep and regelation mechanisms. As a result,

we are able to relate the closure velocity of the ice roof above

the water sheet to effective pressure and sheet thickness. A

steady state water sheet can then be formed if the melt rate

of the ice roof due to viscous dissipation in the sheet bal-

ances the closure velocity. Steady state sheets of this form

can, however, only persist if they are also stable, that is,

if a small departure from steady state thickness leads to a

negative feedback that returns thickness to its steady state

value. This requires that a small thickening of the sheet

from steady state should lead to a larger increase in down-

ward ice velocity than the corresponding increase in melt

rate. In turn, this is the case if a thickening of the sheet

leads to a significant loss of contact between ice and bed

protrusions.

Our theory predicts that such stable steady states do ex-

ist, and in fact, for beds with multiple protrusion sizes, mul-

tiple stable steady states can exist. Switches between these

steady states can then lead to abrupt switches in water dis-

charge in the drainage system. Future work will extend our

theory to take account of spatial variations in effective pres-

sure and hydraulic gradient, and to understand the effects

of potential hydraulic switches.
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Notation

a fractal index.
A Ice creep coefficient.
c ice specific heat at constant pressure.
fd Darcy-Weisbach friction factor.
H water depth (= sheet thickness= storage).
j, k indicate protrusion size, class dependence (as subscript).
k wavenumber.
K thermal conductivity.
l protrusion spacing.
le effective creep length scale.
L ice latent heat.
m melt rate.
n index from Glen’s flow law.
Ns number of grains.
N0 reference number of grains.
pw subglacial water pressure.
pe total effective pressure.
q0 heat flux.
Q width-averaged subglacial water flux.
r water depth dependent protrusion contact radius.
re regelation length scale.
R protrusion (grain) radius.
R0 reference grain radius.
Si ice area.
Sw water area.
Ss ice–bed contact area.
t time.
T water temperature.
Tm ice melting temperature.
u water velocity.
ub ice sliding velocity.
v total closure velocity.
vc creep closure velocity.
vr regelation closure velocity.
x axis perpendicular to flow.
y axis along flow.
β pressure melting parameter.
κ turbulent diffusivity in water.
ρw water mass density.
ρi ice mass density.
σ stress.
σe effective stress.
σi ice overburden stress.
σs stress on bed contact area.
φ hydraulic potential driving flow.
Φ sediment grain size index.
ω growth rate.
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Appendix A: Temperate versus subtemperate
regelation

In the context of a theory for the freeze-on of subglacial
sediments, Rempel [2008] studied contacts between glacial
ice and bed particles not dissimilar from those considered
above, and it is therefore relevant to compare the two theo-
ries and point out where they depart from one another.

One way to demonstrate that our essentially temperate
regelation model is appropriate is to compute the thickness
of the microscopic water film thickness that must separate
bed protrusions from the overlying ice. The theory of inter-
facial premelting then allows this film thickness to be related
to the temperature of the film [Emerson and Rempel , 2007;
Rempel , 2008], and if it differs only insignificantly from the

melting point, then regelation is temperate. Film thickness
can be estimated by calculating the water flux carried by
this film in evacuating melt generated at the top of the pro-
trusion. This flux can in turn be related to film thickness,
water viscosity and the pressure gradient available to drive
the flux as in appendix B of Emerson and Rempel [2007].

Here we wish to dwell a little further on the difference
between our temperate regelation model and the theory in
Rempel [2008]. In essence, the differences between the the-
ories arises because there is no macroscopic subglacial wa-
ter sheet in Rempel’s work, even when there is no frozen
fringe. Ice penetrates directly into pore throats between
the sediment grains that make up the glacier bed, and the
corresponding high curvature of the ice–porewater interface
plays an important role in supporting ice overburden. By
contrast, surface tension effects do not play a role in force
balance in our theory. Associated with the high curvature
in Rempel’s theory is a dip in ice–porewater interface tem-
perature below the pressure melting point Tm at which a
flat ice-water interface would be stable. Consequently, the
contact between ice and sediment grains is subtemperate at
a temperature Tl, which allows the thickness of a premelted
water film (of much smaller thickness than the pore throat
radius) between ice and sediment grains to be estimated.

A downward regelation velocity vr requires water melted
at the ice-sediment contacts to be evacuated through this
premelted film, and standard lubrication theory allows Rem-
pel [2008, appendix A] to estimate the corresponding pres-
sure difference that drives the required water flux. This
pressure difference corresponds to our ∆σ in equation (10),
and, in the absence of a frozen fringe, to δp in Rempel’s
theory.

The difference in our theory is that our macroscopic wa-
ter sheet implies essentially zero curvature of the ice-water
sheet interface, which therefore remains at the melting point
Tm, and hence our theory deals with temperate regelation.
Specifically, we do not know a priori the temperate Tl of
the microscopic water film at ice–sediment particles, and
the thickness of the film can therefore vary to accommodate
the necessary water flux required by the regelation veloc-
ity vr. Instead, we relate the rate of melting and refreezing
around ice-sediment contacts to the heat flux associated dif-
ferences in pressure melting point induced by pressure vari-
ations around the ice-sediment contacts [see also Fowler ,
1981; Weertman, 1957]. This assumes that the ice-sediment
contacts remain at the local pressure melting point, and is
where our theory departs from that of Rempel [2008]. In
Rempel’s theory, steady state without a frozen fringe im-
plies the curvature K in the pore throats must take the
value required for surface tension to support the overburden.
This curvature can in turn be related to the temperature at
the base of the ice through the Clapeyron equation and the
Gibbs-Thomson effect, and the corresponding temperature
is generally below the melting point.

However, Rempel’s theory is still relevant to our work.
Specifically, our numerical results predict a non-zero ice
roof closure velocity even as sheet thickness H → 0. Of
course, once the macroscopic water sheet has disappeared
and H = 0, ice does invade pore throats between sediment
grains. This can be expected to suppress further downward
motion (so v in our theory must effectively be discontinuous
at H = 0). In fact, once there is no macroscopic water layer,
it is the theory in Rempel [2008] that predicts whether there
is any further downward motion of ice into the substrate,
and if so, at what rate.
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a

b

Figure 1. (a) A simple illustration of regelation closure.
The water layer is the lightest gray. As the ice descends
onto the grains, stress from the overlying ice is concen-
trated, and the ice melts. Grey arrows show the sense of
ice motion. Black arrows indicate motion of water gener-
ated from ice melt. (b) An illustration of creep closure.
Ice preferentially sags into the water layer with a larger
spacing between particles.

Table 1. Model parameters.

Parameter Value Units Notes

A 6.8× 10−24 s−1 Pa−n Creep coefficient [Paterson, 1994, p. 97]
c 4218 J kg−1 K−1 Ice specific heat
fd 0.12 Darcy-Weisbach friction coefficient [Clarke,

2003]
g 9.81 m s−2 Gravitational acceleration
K 3.3 W m−1 K−1 Thermal conductivity of ice or sediment
L 3.336× 105 J kg−1 Latent heat of ice
n 3.0 Flow law index [Nye, 1953; Paterson, 1994]
β 7.440× 10−8 K Pa−1 Pressure melting coefficient [e.g.,

Röthlisberger and Lang , 1987]
ρi 916.7 kg m−3 Ice mass density
ρw 1000.0 kg m−3 Water mass density
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a

b

c

Figure 2. A simple illustration of the stress recursion
scheme. Large white arrow in center represents ice over-
burden stress and is constant for a, b, and c. Water pres-
sure is constant for all panels. Same color scheme for ice,
water, and protrusions as Figure 1. (a) Black arrows at
the top of large protrusions illustrate that stress divides
evenly between the largest protrusions. (b) For smaller
H, where ice is supported by a second size class, stress
on largest protrusions lessens. Smaller protrusions sup-
port the remainder of the normal stress. (c) For an even
smaller H, stress on largest protrusion sizes is smaller.
Stress on the intermediate protrusion size also decreases
because smallest protrusions bear some of the total stress
available for closure.
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Figure 3. (a) Cut away view of glacier bed. Only the
largest protrusion sizes and water support the ice. Wa-
ter flows between an ice–bed gap. (b) Same as (a), but
viewed from above. Only protrusions that support the
ice are included. Protrusions with radius smaller than
R2 are wholly submerged. Not to scale. (c) Cross sec-
tion along c1 to c2 from (a) and (b) showing R1 and r1.
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Figure 4. Closure rate as a function of water depth and
effective pressure in meters of ice equivalent for a grain
size of R = 0.5 mm. Approximately 97.5% of values fall
within the color scale. Higher values occur for small r
where smaller areas of the grains are in contact with ice.
Maximum downward velocity is about 5.5× 10−4 m s−1

for effective pressures of 100 m ice equivalent and as R
tends to 0.5 mm. Black contour interval is 5×10−6 m s−1.
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Figure 5. Closure rate as a function of water depth and
effective pressure in meters of ice equivalent for two grain
sizes of R = 0.256 m and R = 0.0005 m. Black contour
interval is 0.5 × 10−6 m s−1. Large white letters and
contours delineate areas of regelation-dominated closure
(R), mixed mode closure (M), and creep-dominated clo-
sure (C). (a) Region from H = 0.001 m to 0.256 m. (b)
Region from H = 0.0 m to 0.001 m.
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Figure 6. Closure rate as a function of water depth and
effective pressure in meters of ice equivalent for 18 grain
sizes from Φ = −9 to Φ = 8 m (see text for details). Black
contour interval is 0.5× 10−6 m s−1. Large white letters
and contours delineate areas of regelation-dominated clo-
sure (R), mixed mode closure (M), and creep-dominated
closure (C). (a) Region for water depth H = 0.001 m to
0.256 m. (b) Region from for water depth H = 0.0 m to
0.001 m.
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Figure 7. Stress partitioning via the recursion scheme
for the closure velocity in Figure 6. Total stress on each
grain size can be computed by multiplying the contour
value multiplied with the horizontal axis value. Contour
for fractional driving stress interval is 0.05. (a) For R1 =
0.256 m (b) For R2 = 0.128 m (c) For R3 = 0.064 m
(d) For R4 = 0.032 m (e) For R5 = 0.016 m (f) For
R6 = 0.008 m.
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Figure 8. Figure 7 rescaled to the height of the indi-
vidual protrusion size. The dimensional vertical axis is
recovered by multiplying the vertical axis by the protru-
sion size. Contour interval for fractional driving stress
is 0.05. (a) For R1 = 0.256 m. (b) For R2 = 0.128 m
(c) For R3 = 0.064 m (d) For R4 = 0.032 m (e) For
R5 = 0.016 m (f) For R6 = 0.008 m.
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Figure 9. Example of a solution plot. Solutions exist
where both rates intersect as a function of water depth
(H) for fixed effective pressure and hydraulic gradient.
Black stars represent stable solutions. Grey circles are
unstable solutions.
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Figure 10. Steady state water depth H(pe, |∂φ/∂y|)
plotted against pe and |∂φ/∂y|. Illumination is from the

upper right. Note that H is generally multi-valued. Sta-
ble branches of H are the broad plateaux with high re-
flectance and correspond to water sheet thickness close
to the protrusion sizes Ri. Unstable solutions are shaded
and slope into the page. The trivial stable solution of
H = 0 is not plotted.
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Figure 11. Steady state water depth H(pe, |∂φ/∂y|)
as a function of effective pressure for constant values of
hydraulic potential gradient. Solutions that slope down-
ward to the right (i.e., with ∂H/∂pe < 0) are stable.
Those that slope to the left are unstable. Lines corre-
spond to (a) ∂φ/∂y = 2.5 Pa m−1, (b) ∂φ/∂y = 5.0
Pa m−1, (c) ∂φ/∂y = 7.5 Pa m−1, (d) ∂φ/∂y = 12.5
Pa m−1.
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Figure 12. Water discharge Q(pe, |∂φ/∂y|). As is the

case for H, Q is generally multi-valued. Stable branches
of the function are shown as more reflective parts of the
surface and slope that slope upward to the left. (i.e., on
which discharge increases with potential gradient).


